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Abstract. A comprehensive understanding of cloud thermodynamic phase is crucial for assessing the cloud radiative effect

and is a prerequisite for remote sensing retrievals of microphysical cloud properties. While previous algorithms mainly dis-

tinguished between ice and liquid phases, there is now a growing awareness for the need to further distinguish between warm

liquid, supercooled and mixed phase clouds. To address this need, we introduce a novel method named ProPS, which enables

cloud detection and determination of cloud top phase using SEVIRI, the geostationary passive imager aboard Meteosat Sec-5

ond Generation. ProPS discriminates between clear sky, optically thin ice (TI), optically thick ice (IC), mixed phase (MP),

supercooled liquid (SC), and warm liquid (LQ) clouds. Our method uses a Bayesian approach based on the cloud mask and

cloud phase from the lidar-radar cloud product DARDAR. Validation of ProPS using six months of independent DARDAR data

shows promising results: The daytime algorithm successfully detects 93% of clouds and 86% of clear sky pixels. In addition,

for phase determination, ProPS accurately classies 91% of IC, 78% of TI, 52% of MP, 58% of SC and 86% of LQ, providing10

a signicant improvement in accurate cloud top phase discrimination compared to traditional retrieval methods.

1 Introduction

Understanding and correctly identifying clouds and their thermodynamic phase in satellite remote sensing is crucial for sev-

eral reasons. First, the phase critically affects cloud-radiation interactions (Choi et al., 2014; Komurcu et al., 2014; Matus and

L'Ecuyer, 2017; Forster et al., 2021; Cesana et al., 2022) and numerous studies have demonstrated the inuence of the cloud15

phase on climate sensitivity in general circulation models (Gregory and Morris, 1996; Doutriaux-Boucher and Quaas, 2004;

Cesana et al., 2012; Tan et al., 2016; Bock et al., 2020). Furthermore, phase transition processes depend on various factors like

temperature, aerosol abundance and type, the Wegener-Bergeron-Findeisen process, vertical velocity, turbulence and are thus

difcult to understand and model (Mioche et al., 2015; Korolev et al., 2017; Coopman et al., 2021; Ricaud et al., 2022). Accu-

rate observations of cloud occurrence and their thermodynamic phase are therefore essential to improve their representation in20

climate models (Atkinson et al., 2013; Cesana et al., 2015; Matus and L'Ecuyer, 2017; Moser et al., 2023; Hahn et al., 2023;

Kirschler et al., 2023). Second, the reliable detection of clouds and the determination of their phase is a critical rst step for the

remote sensing retrieval of cloud properties such as optical thickness, effective particle radius and water path. Ice and liquid
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cloud particles have different scattering and absorption properties, and an incorrect phase assignment can lead to signicant

errors in remotely retrieved cloud properties (Marchant et al., 2016).25

Passive sensors aboard geostationary satellites play an important role in the observation of clouds and their thermodynamic

phase. The advantages of these sensors are their wide eld of regard and their ability to observe the same area at any time of day,

allowing to study the temporal evolution of clouds with high temporal resolution. However, determining the thermodynamic

phase of clouds using passive sensors is a challenging task. In the past, passive sensor phase retrievals often only distinguished

between ice and liquid clouds (or ice/liquid/unknown) (e.g., Key and Intrieri, 2000; Knap et al., 2002; Baum et al., 2012;30

Bessho et al., 2016; Marchant et al., 2016; Platnick et al., 2017; Benas et al., 2017). More recently, retrieval algorithms have

been developed for imagers on geostationary satellites like GOES-R/S and Himawari-8/9, allowing for a further distinction

between mixed-phase, liquid, and, in the case of GOES, supercooled liquid cloud tops (Pavolonis, 2010; Wang et al., 2019; Li

et al., 2022). Nevertheless, accurately distinguishing between phases beyond just liquid and ice remains challenging (Korolev

et al., 2017). Also, Mayer et al. (2023) show that mixed-phase and supercooled cloud tops are often present over the Meteosat35

disk, not only in regions like the Southern Ocean, and thus deserve dedicated retrieval algorithms.

We have developed a new method for cloud detection and cloud top phase determination for the Spinning Enhanced Visible

and Infrared Imager (SEVIRI) on board the geostationary Meteosat Second Generation (MSG) satellite (Schmetz et al., 2002)

using a Bayesian approach. Our focus is on the identication of mixed phase and supercooled liquid clouds in addition to the

’traditional’ purely ice and warm liquid cloud tops. We use the Lidar-Radar cloud product DARDAR (liDAR/raDAR, Delanoë40

and Hogan, 2010) as the basis for this method. Synergistic lidar-radar techniques are considered the most reliable for cloud

phase determination from satellites because the used instruments are complementary due to their different penetration depths

and different particle size sensitivities (Wang, 2012; Delanoë and Hogan, 2008; Zhang et al., 2010; Korolev et al., 2017; Ewald

et al., 2021). Over the years, they have been widely used to study the global horizontal and vertical distribution of cloud

occurrence and cloud phase (Okamoto et al., 2010; Wang, 2012; Mioche et al., 2015; Matus and L'Ecuyer, 2017; Listowski45

et al., 2019). For our new phase retrieval method, we use the DARDAR product as ground truth for cloud and phase occurrence

which can distinguish between warm liquid, supercooled liquid, mixed phase and ice. We collocate ve years of these data

with SEVIRI measurements in selected channels and ancillary data to create a large collocated data set with information on

the cloud top phase from DARDAR. Our method then uses a probabilistic Bayesian approach as follows: We compute a prior

representing the probability of cloud and phase occurrence as well as probabilities for SEVIRI channel measurements from50

the collocated data set. We update the prior using Bayes’ formula with each successive SEVIRI measurement, resulting in a

probability for cloud occurrence and for its top phase based on the prior information and the selected SEVIRI measurements.

The SEVIRI channels used in this calculation include three infrared channels (centred at 8.7µm, 10.8µm and 12µm), two

visible channels (0.6µm and 1.6µm) and a local texture parameter derived from the 10.8µm channel.

Bayesian approaches have proven successful in various classication problems using satellite data (Merchant et al., 2005;55

Mackie et al., 2010; Heidinger et al., 2012; Pavolonis et al., 2015). One advantage of the Bayesian approach is its ability to

handle complexity and consolidate diverse spectral information from different SEVIRI channels into a single metric (Pavolonis
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et al., 2015). Furthermore, it is straightforward to dene a quality parameter for the result, since the outcome of a Bayesian

approach is a probability.

To test the performance of our method we validate it using six months of DARDAR data, which were not used for the60

computation of probabilities in order to keep the validation independent.

2 Data set

2.1 DARDAR-MASK

As ground truth for cloud occurrence and cloud thermodynamic phase, this study uses the product DARDAR-MASK, part

of the synergistic active remote sensing product DARDAR (liDAR/raDAR, Delanoë and Hogan, 2010). DARDAR-MASK is65

derived from the sun-synchronous, low-earth orbit satellites CloudSat and CALIPSO. It provides vertically resolved cloud

thermodynamic phase along the track of the CALIPSO and CloudSat satellites with a spatial resolution of 1.1 km along track

and 60m in the vertical direction. For brevity, we use "DARDAR" instead of DARDAR-MASK to describe the cloud product in

the following. An example curtain of DARDAR can be seen in the background of Fig. 7. We collocate ve years (2013–2017)

of DARDAR data with observations of the passive instrument SEVIRI aboard the geostationary satellite Meteosat Second70

Generation MET-9 by merging overpasses of the polar orbiting satellites with the corresponding SEVIRI pixel for each time

and latitude-longitude combination. The collocated DARDAR data are then aggregated to the spatial resolution of the SEVIRI

sensor (3×3 km2 at the sub-satellite point). Details on how this collocation is done can be found in Mayer et al. (2023). From

the DARDAR data we extract two key pieces of information for each SEVIRI pixel: 1) whether a pixel is clear or cloudy, and

2) a cloud top phase. This cloud top phase at SEVIRI resolution is dened by horizontal and vertical averaging of DARDAR75

gates using a simplied penetration depth (Mayer et al., 2023). We distinguish between warm liquid (LQ), supercooled liquid

(SC), mixed phase (MP) and ice. However, the aggregation and classication criteria have a special focus on ice and every time

a DARDAR gate at cloud top contains ice the cloud top phase assigned to SEVIRI is either ice or mixed-phase, independently

of the amount of ice observed (see Mayer et al. (2023) for details). For pure ice clouds we use information on the optical

thickness contained in DARDAR to distinguish further between optically thin ice (TI) and thick ice (IC), where we use an80

optical thickness τ = 2 as threshold. We employ this distinction since TI and IC have different radiative properties and are

typically detected by different channel (combinations) of SEVIRI (see Sect. 4). The optical thickness threshold is consistent

with the cloud type categories of GOES-R (Pavolonis, 2010). To combine both aspects (cloudy/clear and cloud top phase), we

introduce a "cloud state parameter", denoted as q ϵ{clear,TI, IC,MP,SC,LQ}. Note that in the following, when we use the

terms "cloud state" or "cloud phase" in the context of our retrieval, we are referring to the phase of a cloud only at the cloud85

top - as passive imagers such as SEVIRI cannot penetrate deep into a cloud.
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Figure 1. (a) Number of samples on the SEVIRI disc in latitude-longitude boxes of 2.5◦×2.5◦. (b) Number of samples in sza-umu (solar

zenith angle - cosine of the satellite zenith angle) parameter space.

2.2 Distribution of samples

Figure 1(a) shows the distribution of samples in the SEVIRI disk in latitude-longitude boxes of 2.5◦×2.5◦. The gure demon-

strates the good coverage of samples over the entire SEVIRI disk.

The DARDAR data is obtained from polar orbiting satellites that follow a sun synchronous orbit. Consequently, it can only90

provide information about clouds during the overight times. This characteristic of the data has implications for our retrieval

process, particularly for the use of solar channels and their dependence on solar and satellite viewing angles. Figure 1(b)

shows the distribution of samples in the parameter space spanned by the solar zenith angle (sza) and the cosine of the satellite

zenith angle (umu). Notably, there are two regions in this parameter space where no samples are available: one for sza values

below 20◦, and another for combinations of high umu and sza values. The use of solar channels in the retrieval is handled95

differently for these two regions: For sza values below 20◦, the probabilities employed in the retrieval process are obtained

from probabilities for sza values larger than 20◦. For the regions in the parameter space without samples for high sza and umu

combinations, at probability distributions are used for the solar channels, i.e. no information about the cloud state is gained

from the solar channels in these regions of the parameter space. This is further explained in Sect. 6.

There are samples available for all other combinations of umu and sza. However, it is important to note that the data set does100

not include all of these possible combinations of angles for every latitude. For instance, at low latitudes, the overight times

always occur around noon, resulting in relatively low sza values (between 20° and 40° for latitudes between 0° and 10°NS).

The statistics for large sza values originate consequently from clouds in higher latitudes. This discrepancy could introduce a

bias when using solar channels depending on angles, as meteorological and microphysical conditions in high latitudes may

differ from those in lower latitudes.105

In addition, as CloudSat operated in daylight-only mode, our data set only includes samples collected during the day. This

could potentially introduce a bias in the nighttime retrieval for clouds whose properties differ between night and day.
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Figure 2. Scheme of the phase retrieval method ProPS. The green box shows the preparation for the retrieval, i.e. the calculation of the

probabilities from the collocated data set. The blue box shows the phase retrieval steps of ProPS.

2.3 Ancillary data

In addition, we include ancillary data such as surface temperature and surface type in the collocated data set. The surface

temperature data are obtained from the ERA5 reanalysis (Hersbach et al., 2020) and interpolated to the SEVIRI grid. For110

surface type classication we have adopted the International Geosphere-Biosphere Programme (IGBP) scheme (Loveland

and Belward, 1997) provided in the MODIS L3 product MCD12C1 (Friedl et al., 2010). Surface types are grouped into ve

categories (water, barren, permanent ice and snow, forest and vegetation excluding forest) and projected onto the SEVIRI

grid (for details see Strandgren et al., 2017). In summary, our collocated data set includes the cloud state parameter q from

DARDAR, SEVIRI observations and ancillary data from ERA5 and IGBP for ve years of data. These ve years of data115

amount to over 40 million data points. The use of all these years should ensure that a reasonable amount of annual variability

is accounted for.

3 Bayes approach applied to satellite data

The output of our new cloud state retrieval method ProPS (PRObabilistic cloud top Phase retrieval for Seviri) is a probability

for the cloud state given all (useful) SEVIRI measurements (as dened in Sect. 4) and ancillary data. In the following we120

explain how this probability is computed with the help of Bayes formula. Figure 2 shows a schematic of the method.

3.1 Bayes method

First, we use the collocated data set to compute probabilities P (q|A) for the occurrence of each cloud state q conditioning on

a set of ancillary parameters A independent of the satellite observations. These probabilities serve as prior of the cloud state
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distribution. These probabilities serve as prior of the cloud state distribution and are updated for each SEVIRI measurement.125

The updated probability for the cloud state, P (q|M1,A), given a SEVIRI measurement M1 (i.e. a brightness temperature, a

brightness temperature difference or a solar observation, s. below) and the set of ancillary parameters A already mentioned

above is calculated using Bayes formula

P (q|M1,A) =
P (M1|q,A)P (q|A)

P (M1|A)
 (1)

The rst term in the numerator, P (M1|q,A), is a conditional probability for the SEVIRI measurement M1 and can be de-130

rived from the collocated SEVIRI-DARDAR data set (Sect. 2). The denominator P (M1|A) acts as a normalisation factor. It

can be computed by breaking it down for each possible cloud state q, leading to the following decomposition: P (M1|A) =


qP (M1|q,A)P (q|A). Note that this is equal to the numerator of Eq. 1 summed over all cloud states q. Hence, all terms

to compute the updated probability P (q|M1,A) can be derived from the collocated data set. We repeat the same step for

subsequent SEVIRI measurements. Updating the probability with a second measurementM2 leads to135

P (q|M2,M1,A) =
P (M2|q,M1,A)P (q|M1,A)

P (M2|M1,A)P (M1|A)
, (2)

with Bayes’ formula being applied twice. For a series of n measurements, the probability for the cloud state q given all the

measurementsM := (M1,M2, ,Mn) and ancillary parameters A can be expressed as

P (q|M,A) =
1

N
P (Mn|q,Mn−1, ,M1,A)

P (M2|q,M1,A)P (M1|q,A)P (q|A), (3)140

with the normalization factor

N = P (Mn|Mn−1, ,M1,A)P (M2|M1,A)P (M1|A) (4)

Thanks to equation 3 we can compute a probability for the cloud state q that takes into account (i) prior knowledge about q, (ii)

all SEVIRI measurementsM and (iii) all ancillary parameters A.

The data requirements for calculating each probability scale with the number of parameters used as conditions. Fortunately,145

the conditional probabilities on the right hand side of Eq. 3 can be simplied by considering the dependencies of the different

SEVIRI channels. For example, if the measurement of one channel, M2, is (approximately) independent of the measurement

of another channel, M1, then its probability reduces to P (M2|q,M1,A) = P (M2|q,A). Similarly, if a measurement is inde-

pendent of certain auxiliary parameters, these parameters can be removed from the set A in the conditional probability (i.e.

A= {a1,a2,a3, }→A= {a1,a3, } if M2 is independent of a2). This simplication step is essential to ensure that the150

probabilities are meaningful and statistically valid. Given the size of our data set of about 40 million data points, we limit the

number of conditions to a maximum of four per probability to ensure statistical validity. In cases where a SEVIRI measurement

depends on more than four of the parameters in its conditional probability, we carefully select which of these parameters are

the most signicant and focus on these, removing the less signicant parameters. The selection of channels and conditions for

each probability is further explained in the following section (Sect. 4).155
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3.2 Retrieval result

The result of Eq. 3 is a probability for each cloud state q. As the nal result of the retrieval method, we choose the most likely

cloud state, q∗, i.e. the cloud state with the highest probability for each SEVIRI pixel

q∗ =maxq(P (q|M,A)) (5)

Thus, the nal result is one cloud state per SEVIRI pixel.160

3.3 Measure of certainty

There are several advantages of using (Bayesian) probabilities: First, they allow to incorporate prior knowledge. This is in

contrast to traditional decision tree models, which typically do not take this valuable information into account. Second, Bayes’

formula provides a standardised approach to integrating information from different channel measurements into a single, ob-

jective metric. It eliminates the need for arbitrary rules when faced with conicting cloud state indications from different165

measurements. Third, the approach maintains transparency; one can clearly understand the origin of the probability values

assigned to each cloud state. Finally, since the outcome is a probability for each cloud state, it is straightforward to develop a

measure of certainty (a quality measure) associated with the outcome. We dene the certainty c as the difference between the

probability for q∗ and the average probability of the remaining other cloud states q′

c= P (q∗ |M,A)− 1

5

∑

q′

P (q′ |M,A) (6)170

This certainty is a number between zero and one. It is close to one when the highest probability is much larger than the other

probabilities. The certainty becomes small when the probabilities for other cloud states are close to the highest probability.

4 Selection of channels and dependencies

This section describes which SEVIRI channels and conditions are used for each probability. From the collocated data set we

have the following set of ancillary parameters175

A= {sza,umu,sfc,skt, lat, lon,season}, (7)

where sza is the solar zenith angle, umu is the cosine of the satellite zenith angle, sfc is the surface type, skt is the surface

temperature, lat is the latitude and lon is the longitude.

To choose the SEVIRI channels and their most important dependencies for the retrieval, we combine physical/theoretical

principles of the physics involved with statistical tools. First, we select channels and channel combinations that are known180

to carry information about the cloud state. We also consider only a selection of conditions for the probability of each channel

(combination) that make sense from a physical perspective. To decide on the conditions for the probabilities, we use the statisti-

cal tool of mutual information (Shannon and Weaver, 1949; Cover, 1999). The mutual information I(Mi;q) between a channel
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(combination) Mi and q is a measure of the information content of Mi with respect to q: The higher the mutual information,

the more information can be gained from Mi in a retrieval of q. We calculate the mutual information I(Mi;q |C) for different185

sets of conditions C to nd the set of conditions C∗ which maximizes the mutual information. These optimal sets of conditions

are then used for the respective conditional probabilities, P (Mi |q,C∗). A selection of computed mutual information values for

different SEVIRI channel (combinations) and sets of conditions is displayed in Fig. 3. To gain insights into the contributions of

different channel (combinations) to cloud and phase detection, we additionally calculate the mutual information between each

channel Mi and the cloud classication cloudyclear, as well as between Mi and the phase classication, under the specied190

conditions C. By comparing the mutual information values for I(Mi;q |C), I(Mi; cloudyclear, |,C) and I(Mi;phase, |,C),

we can assess the extent to which each channel contributes to the detection of cloudy or clear conditions, as well as to the

determination of cloud phase.

In the following, we briey describe which conditional probabilities are consequently used for the retrieval. We discuss

the physical connection between each channel (combination) and the cloud state q, and the physical reasons why the chosen195

conditions for the probabilities might enhance their information content.

4.1 Prior

As prior knowledge we use the probability

P (q | lat, lon,season) (8)

This means that the prior is the probability for each cloud state per latitude, longitude and season, calculated from the ve years200

of collocated data. Besides latitude, longitude and season, the set of ancillary parameters A introduced above in Sect. 7 also

includes surface type, surface temperature, and solar/satellite zenith angles. However, since latitude and longitude are already

constrained, incorporating surface type or satellite viewing angles as additional constraints becomes unnecessary. Moreover,

compared to conditioning on latitude, longitude and season, conditioning on solar zenith angle or surface temperature reduces

the information content of the prior. (see Fig. 3). Hence, location (latitude and longitude) and season are the main dependencies.205

4.2 Brightness temperature at 10.8µm

As the rst SEVIRI measurement we use the brightness temperature (BT) centred at 108µm wavelength, BT10.8, located in

the atmospheric window of the electromagnetic spectrum. At this wavelength, the atmosphere is most transparent compared

to all other SEVIRI infrared channels. Therefore, it is a good approximation for the temperature of the surface and (optically

thick) cloud tops - one of the most important parameters for cloud detection and phase discrimination. This can also be seen in210

Fig. 3, as the mutual information between q and BT10.8 has the highest values compared to all other SEVIRI channel mutual

information values. We use the conditional probability

P (BT10.8 |q,umu,skt) (9)
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Figure 3. Mutual information I between SEVIRI channel (combinations) and the cloud state q (rst row), cloudy/clear, abbreviated as

c/c, (second row) and cloud phases (third row) for different sets of conditions C. The different values of the mutual information for q,

cloudy/clear and phase indicate whether a channel (combination) contributes rather to cloud or phase detection. The blue boxes indicate the

sets of conditions that were chosen for ProPS.

By conditioning on skt we take into account the temperature difference (contrast) between the brightness temperature and

the surface temperature. This is particularly important for cloud detection. The dependence on umu is particularly relevant215

for optically thin clouds, where a higher satellite zenith angle means an effective increase in optical thickness and therefore

smaller BT values.
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4.3 Brightness temperature difference between 10.8µm and 8.7µm channels

The brightness temperature difference (BTD) between the 108µm and 87µm window channels is commonly used in phase

determination algorithms (Menzel et al., 2002; Platnick et al., 2003; Zhou et al., 2022). This BTD, denoted as BTD10.8−8.7,220

provides valuable information about cloud phase in several ways. Firstly, it is sensitive to the amount of water vapor present

above cloud top. This is because the 87µm channel is more strongly affected by water vapor absorption in the atmosphere

compared to the 108µm channel. Thus, the BTD is closely related to the cloud top height and thus to the cloud top temperature,

which in turn is related to the cloud phase. Secondly, the BTD is inuenced by the effective radius of cloud particles (Ackerman

et al., 1990). This parameter provides a clue about the phase of the cloud since ice crystals generally have larger effective radii225

than liquid droplets. Thirdly, BTD10.8−8.7 is sensitive to cloud optical thickness (for small optical thicknesses, Ackerman

et al., 1990). On the one hand, this is helpful for the detection of optically thin clouds, on the other hand, this can indirectly

indicate the cloud phase since only ice clouds, such as cirrus clouds, typically show very low optical thicknesses. Note, however,

that dissipating clouds or small-scale clouds can also result in low optical thickness in SEVIRI pixels, which could bias the

interpretation of these clouds as ice clouds. Lastly, the BTD also has a direct dependence on cloud phase for optically thin230

clouds, i.e. when transmission through the cloud is signicant, since the variation in scattering and absorption properties

between the two wavelengths 87µm and 108µm is different for ice crystals and liquid droplets. We use the conditional

probability

P (BTD10.8−8.7 |q,BT10.8,umu,sfc) (10)

Conditioning on umu takes into account that the satellite zenith angle affects the path length and therefore both the amount of235

water vapour above the cloud and the effective cloud optical thickness. We also condition on the surface type, since the typical

values of BTD10.8−8.7 for clear sky differ between surface types - especially for deserts such as the Sahara or the Arabian

Peninsula due to the low spectral emissivity of desert dust at 8.7µm (Masiello et al., 2014). The relationship with BT10.8 is

obvious, since it is contained in BTD10.8−8.7.

4.4 Brightness temperature difference between 10.8µm and 12.0µm channels240

The BTD between the two window channels at wavelengths 108µm and 120µm is often used in satellite retrievals for

cloud detection and cloud properties (e.g., Key and Intrieri, 2000; Pavolonis et al., 2005; Krebs et al., 2007; Kox et al., 2014;

Hünerbein et al., 2022). BTD10.8−12.0 is mainly sensitive to optical thickness and effective radius. Both of these quantities

contain information about the cloud phase as mentioned above. Furthermore,BTD10.8−12.0 also depends directly on the phase,

especially for small optical thicknesses, since, as for BTD10.8−8.7, the scattering and absorption properties between the two245

wavelengths 120µm and 108µm vary differently for ice crystals and liquid droplets (Key and Intrieri, 2000). We use the

conditional probability

P (BTD10.8−12.0 |q,BT10.8,sfc) (11)
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Since the main sensitivity is on optical thickness, BTD10.8−12.0 is mainly useful for detecting thin ice clouds. This is particu-

larly useful when combined withBT10.8, asBTD10.8−12.0 can distinguish between warm cloud top temperatures and optically250

thin clouds with warm surface temperatures, which may have the same value of BT10.8.

4.5 Reectivity of the 1.6µm channel

The reectivity of solar radiation is generally a good indicator for the presence of a cloud, as clouds are usually brighter (more

reective) than the surface for clear sky conditions. Further, near-infrared (NIR) reectivity, like the 16µm channel, is a well

established indicator of cloud phase as the reectivity at 16µm, R1.6, is sensitive to the effective radius of cloud particles: The255

typically small liquid droplets reect more radiation at this wavelength than the typically large ice crystals. In addition to its

sensitivity to the effective radius, R1.6 is also sensitive to the phase itself, since ice absorbs more radiation than water at this

wavelength. We use the conditional probability

P (R1.6 |q,sza,umu,sfc) (12)

Conditioning on the solar and satellite zenith angles, sza and umu, takes into account that reectivities are angle dependent.260

The sensitivity of R1.6 on azimuth angles is comparatively small, we therefore neglect it in order to keep the number of

conditions small. The surface type, sfc, is a proxy for surface albedo, as different surface types each have typical albedo values.

4.6 Reectivity ratio of the 0.6µm and 1.6µm channels

As the next observation, we consider the reectivity ratio RR1.6/0.6 =
R1.6

R0.6
. The combination of a NIR channel (R1.6) and a

visible channel (R0.6) is often used to retrieve cloud microphysical parameters such as effective radius and optical thickness265

(Nakajima and King, 1990). These microphysical parameters contain phase information, so combining NIR and visible chan-

nels is useful for a phase retrieval (Knap et al., 2002; Marchant et al., 2016). We use the ratio between the two channels to

reduce the dependence on solar and satellite viewing angles as well as on particle number concentration (Chylek et al., 2006).

We use the probability

P (RR1.6/0.6 |q,R1.6,sza,umu) (13)270

Apart from the dependence on R1.6, we again consider the solar and satellite zenith angles for the same reasons as for the

conditional probabilitiy of R1.6.

4.7 Local binary pattern at 10.8µm

Finally, we use the local binary pattern (LBP) of the 108µm infrared channel, LBP(BT10.8). The LBP technique is used for

texture analysis. It characterizes the spatial variations of pixel intensities by comparing the central pixel with its surrounding275

neighbors within a dened local region. Texture parameters have already been used in Bayesian retrieval methods (Merchant

et al., 2005). The texture of clouds differs in most cases from the texture of the surface, so that the LBP can help in the detection

of clouds. Further, the texture of cloudy regions can differ for different cloud types, such as small cumulus clouds with large
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local variations in reectivity versus large smooth cirrus clouds with small variations in reectivity. Since different cloud types

are associated with different cloud phases, the LBP is also a suitable parameter for phase detection.280

To compute the LBP, the central pixel is compared with eight surrounding pixels in a dened neighbourhood: if the intensity

value of a neighbour is greater than or equal to the intensity of the central pixel, a binary 1 is assigned; otherwise, a binary 0

is assigned for each neighbour. The sum of these binary values contains valuable texture information: the maximum sum value

of 8 indicates a uniform image region, while lower values indicate non-uniform regions. For example, a sum of 4 indicates an

even distribution of neighbours with both higher (or equal) and lower intensities compared to the central pixel. A Gaussian285

lter is then applied to smooth the results to obtain a continuous value.

The infrared channel BT10.8 is well suited for calculating a texture as the atmosphere is most transparent at this wavelength

compared to all other SEVIRI infrared channels. The advantage of choosing an infrared channel is that it is also available

during the night. The LBP of BT10.8 is particularly useful for detecting low clouds during the night, which are otherwise

difcult to distinguish from clear sky for infrared channels. We use the conditional probability290

P (LBP(BT10.8) |q,sfc,umu) (14)

The condition on surface type, sfc, takes into account that different surface types have different textures. The condition on umu

takes into account that pixel sizes and therefore the computed texture from LBP vary with umu.

5 The PRObabilistic cloud top Phase retrieval for Seviri (ProPS)

This section gives an overview of the ProPS retrieval method using the equations and probabilities explained in the last sections295

(Sect. 3 and Sect. 4). Figure 2 gives a schematic overview of the retrieval method.

5.1 Cloud top phase

The output of the Bayesian method is a probability P (q |M,A) for each cloud state q ϵT,{clear,TI, IC,MP,SC,LQ}, of which
we use the cloud state with the highest probability, q∗, as the nal result.
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5.2 Daytime300

Using the probabilities for the selection of SEVIRI channels as explained in the previous section, the cloud state retrieval

equation for ProPS (see Eq. 3) becomes

P (q |M,A) =
1

N
P (LBP(BT10.8) |q,sfc,umu)

P (RR1.6/0.6 |q,R1.6,sza,umu)

P (R1.6 |q,sza,umu,sfc)

P (BTD10.8−12.0 |q,BT10.8,sfc)

P (BTD10.8−8.7 |q,BT10.8,umu,sfc)

P (BT10.8 |q,umu,skt)P (q | lat, lon,season) (15)

with the normalization factor N =N(M,A) dened such that


qP (q |M,A) = 1. M is the set of SEVIRI channel (combi-305

nations)

M = {LBP(BT10.8),RR1.6/0.6,R1.6,BTD10.8−12.0,

BTD10.8−8.7,BT10.8} (16)

and A the set of ancillary parameters (see Eq. 7).

5.3 Nighttime310

During the night, only thermal SEVIRI channels are available. For the night version of ProPS we therefore only use probabili-

ties of the thermal channels from Eq. 15:

P (q |M,A) =
1

N
P (LBP(BT10.8) |q,sfc,umu)

P (BTD10.8−12.0 |q,BT10.8,sfc)

P (BTD10.8−8.7 |q,BT10.8,umu,sfc)

P (BT10.8 |q,umu,skt)P (q | lat, lon,season) (17)

6 Computation of probabilities315

We use the method of kernel density estimation (KDE) to compute the probabilities needed for ProPS from the collocated

data set. KDE is a technique for estimating a probability density function (pdf), which better represents the details of the pdf

compared to traditional histograms (Węglarczyk, 2018). The KDE technique provides a smooth estimate of the pdf without

imposing assumptions about its shape. Further advantages are that, unlike histograms, it includes all sample point locations

and can more convincingly suggest the presence of multiple modes (Węglarczyk, 2018). Consider a variable of interest x with320
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Figure 4. Construction of a kernel density estimate (continuous line) with a Gaussian kernel (dashed lines) for four sam-

ples of the true probability distribution (vertical red line segments). Figure adapted from Węglarczyk (2018) (CC BY 4.0

https://creativecommons.org/licenses/by/4.0/).

an unknown probability distribution P (x) and a sample of n observations, x1,x2, xn, of that variable. To compute the kernel

estimate P̂ (x) of the true probability distribution P (x), we assign a kernel function K(xi,x) to each sample data point xi as

follows (Silverman, 1986; Węglarczyk, 2018):

P̂ (x) =
1

n

n∑

i=1

K(xi,x) (18)

The kernel functionK(xi,x) is centred at xi and normalised to unity, i.e.
∫ +∞
−∞ K(xi,x)dx= 1. We employ a Gaussian kernel325

function, which is commonly used. The kernel transforms the discrete point location represented by xi into a smooth distribu-

tion centred around xi. Figure 4 illustrates this technique for the one dimensional case. For d > 1 dimensions, both x and xi

become d-dimensional vectors instead of scalars. For example, in our case, to compute the probability P (BT10.8, q,umu,skt),

the variable x is a four-dimensional vector x= (BT10.8, q,umu,skt).

The width of the kernel function determines the amount of smoothing and is represented by a parameter called bandwidth330

h. Too small values of h may result in a probability estimate showing insignicant details, while too large values of h may

smooth out important features (Węglarczyk, 2018). A certain compromise is needed. We choose to use an (effectively) dynamic

bandwidth h, since there are regions of parameter space with many samples that allow small values of h, and other regions

with few samples that require large h: before computing the kernel estimate P̂ (x), the variable x is transformed, xt = f(x) :=

arctan( 1β (x−α))γ. As a non-linear transformation, f(x) can reshape the distribution of the data by stretching or compressing335

certain regions by ne-tuning the α, β and γ parameters. The parameters of the transformation are chosen for each variable x

in such a way that the samples of the variable xi are more evenly distributed in the transformed space. The arctan function in

the transformation is particularly useful for this purpose, as it has the ability to condense the edges of parameter space, where

there are typically fewer samples, while expanding the central region. The parameters α and β can be understood as the global
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mean and variance of the variable x. Additionally, these transformation parameters are chosen to ensure that all transformed340

variables fall within a similar range, typically around −1 to 1, to maintain similar smoothness in the directions of all variables.

This requires (in some cases) linear scaling with the γ parameter in the transformation function. After the transformation, the

kernel estimate P̂ t(xt) is computed in the transformed space using a constant bandwidth. The variable is nally transformed

back to the original variable space, P̂ t(xt) = P̂ t(f(x)) =: P̂ (x). This approach results in a narrower kernel in regions with

many xi samples and a wider kernel in regions with fewer xi samples. Consequently, our procedure allows for detailed features345

in the kernel estimate P̂ (x) where numerous samples are available, while maintaining reasonable smoothness and atness in

regions with limited samples. The transformation parameters as well as the bandwidth for each variable are shown in table 1.

In the case of discrete variables such as q, season, or surface type, the KDE method cannot be used directly. Instead, we

divide the variable space into subcategories based on all possible combinations of the discrete variables of the probability

in question. For each subset, we utilize the KDE method to calculate the probability for the continuous variables within350

that specic subcategory. Subsequently, we normalize the probabilities to obtain a normalized probability distribution that

incorporates both discrete and continuous variables.

From the so computed kernel estimate P (x) with x a d-dimensional vector x= (X1,X2, Xd) a conditional probability

can be computed using the relationship

P (X1|X2, ,Xd) =
P (X1,X2, ,Xd)

P (X2, ,Xd)
355

=
P (X1,X2, ,Xd)
X1 P (X1,X2, ,Xd)

 (19)

The probabilities are only computed for the locations in parameter space where a sufcient number of samples, xi, are

available. If too few samples are available, the pdf is set to a at distribution, i.e. it contains no information and does not

change the probability for the cloud state q when multiplied as in the retrieval Eq. 15. Since the collocated data set is quite

large, this is only necessary for a few special cases. Most notably, this is necessary for the solar channel (combination) R0.6360

and RR1.6/0.6 for the regions of sza-umu parameter space where no samples are available (see Sect. 2.2 and Fig. 1). There

is however one important special case for the probabilities of the solar channel (combination) R0.6 and RR1.6/0.6, for which

we proceed differently: DARDAR data are not available for sza values below 20◦ (see Sect. 2.2), as the sun-synchronous

orbit of the polar orbiting satellites Calipso/CloudSAT never reaches lower sza values. For these relatively low sza values, the

dependence of the reectivity on sza is small compared to other dependencies. As a simple solution for this special case, we365

therefore use the probabilities calculated for the lowest available sza also for the smaller values of sza.

Using this KDE method, we compute all probability distributions needed for the ProPS algorithm (see Eq. 15). Fig. 5 shows

an example for the probability P (BT10.8 |q,umu,skt), i.e. the probability to measure BT10.8 values, given the cloud state q

(in different colors) and xed values for the surface temperature, skt, and satellite zenith angle, umu. As expected, for clear

sky the probability peaks at BT10.8 values close to the surface temperature. For LQ, SC, MP and IC clouds, the probability370

distribution shifts to increasingly lowerBT10.8 values. There are however large overlap regions, which show that the cloud state

cannot be determined from BT10.8 measurements alone. TI clouds have a relatively at probability distribution over a wide
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Table 1. Parameters for transforming and computing the kernel density estimate (KDE) for SEVIRI measurements and ancillary parameters

variable transformation parameters bandwidth

BT10.8 α= 270, β = 30, γ = 1 0.04

BTD10.8−8.7 α= 2.3, β = 2, γ = 1.5 0.04

BTD10.8−12 α= 1, β = 3, γ = 1.1 0.04

R1.6 α= 30, β = 40, γ = 1 0.04

RR1.6/0.6 α= 0.7, β = 1.1, γ = 1 0.04

LBP(BT10.8) α= 6, β = 2, γ = 1 0.04

sza α= 45, β = 120, γ = 1 0.04

umu α= 0.58, β = 1.2, γ = 1 0.04

skt α= 290, β = 20, γ = 1 0.04

lat no transformation 2

lon no transformation 2

200 220 240 260 280 300
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Figure 5. Example for the probability distribution P (BT10.8 |q,umu,skt) computed using KDE at xed values for umu and skt.

range of BT10.8 values, since the radiation from the surface is transmitted to a varying degree. More examples for probability

distributions can be found in the appendix (see Fig. A1).

7 Example application of ProPS375

Fig. 6 (right) shows the output of the ProPS retrieval for one exemplary SEVIRI scene, on 2022-04-25 at 12:00UTC. For

comparison the natural color RGB of the scene is also shown (left). The result of the ProPS retrieval looks sensible: The

retrieval detects (most) clouds which can be seen in the RGB. The distribution of phases on the SEVIRI disc makes physical
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Figure 6. RGB composite (left) and example application of ProPS (right) for a SEVIRI scene on the 2022-04-25 at 12:00 UTC.

sense, with e.g. mainly IC in the ITCZ, LQ over the subtropical ocean and SC/MP mainly over the Southern Ocean and

Northern high latitudes.380

8 Performance evaluation using DARDAR

In this section we evaluate how well ProPS is able to reproduce the DARDAR cloud detection and phase classication. To this

end we randomly select six months from the ve years collocated data set as validation data set (constraining that every season

is represented), which amounts to about 3.7 million data points. These data points of the validation data set are not used for the

computation of the probabilities (see Sect. 6) to perform an independent validation.385

8.1 Comparison to DARDAR example tracks

We start the performance evaluation with two example curtains from DARDAR to highlight the strengths of the ProPS retrieval

and the challenges posed by nature / DARDAR to it (see Fig. 7. These two examples demonstrate how the retrieval works at

different latitudes and meteorological conditions. Both gures show a DARDAR curtain coarsened to SEVIRI resolution and

the corresponding results of the ProPS algorithm in the plots above, i.e. probabilities for the cloud state q along the track. As390

an overlay on the DARDAR curtain, the gures show the most likely cloud state from ProPS, q∗, and the cloud state retrieved

from DARDAR, qdardar, which is an aggregate of all DARDAR values per SEVIRI pixel over a vertical depth of 240m from

the cloud top (see Mayer et al. (2023) for details).

The ProPS and DARDAR cloud states, q∗ and qdardar, match well in most cases. For the high latitude example in Fig. 7(a),

ProPS is able to detect MP and SC clouds even for very low (< 1 km) cloud top heights. Figure 7(b) shows that MP and SC395

clouds are also present in low latitudes close to the equator where convection is the main cloud formation mechanism and

that ProPS is mostly able to detect them. This might be very useful for future studies of the life cycle and phase transitions of
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Figure 7. Example application of ProPS to DARDAR tracks in (a) high latitudes and (b) low latitudes. The bottom panel of each sub-gure

shows the DARDAR curtain coarsened to SEVIRI resolution; the corresponding results of the ProPS algorithm (probabilities P (q)) are

shown in the panels above. The cloud state retrieved from DARDAR, qdardar , and the most likely cloud state from ProPS, q∗, along the track

are shown in between (in the same colour code as P (q)).

convective clouds (Coopman et al., 2020). The two gures also show some examples of small cirrus clouds as well as some LQ

clouds beneath an aerosol layer. In both cloud situations, clouds are mostly retrieved in an accurate way. In general however,

the detection works best for spatially extended cloud states. The probabilities for the cloud state, P (q), show that certain clouds400

can be classied "more easily" than others, i.e. when the probability for a particular state is close to one, corresponding to high

values of the certainty parameter. This is the case, for example, for the large IC clouds and some LQ clouds and clear sky pixels

in the example gures.

The examples highlight however also challenging situations for the retrieval: In the DARDAR curtain SC and MP cloud

tops often appear together in a cloud and alternate on small spatial scales. ProPS is often not able to resolve this small scale405

variability. Another challenge is posed by optically thin ice clouds. When ProPS fails to detect these TI clouds, it often classies

these pixels either as the cloud state of a cloud below, if the overlying TI cloud is optically very thin so that the radiation from
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the cloud below is largely transmitted through the overlying ice cloud, or as MP, if the overlying TI cloud is somewhat thicker

and the radiation signals from a cloud below containing liquid particles mix with the overlying TI cloud signal. This effect often

happens at the edges of large ice clouds, which are typically optically very thin and/or do not ll an entire SEVIRI pixel. An410

example can be seen in Fig. 7(a) at the edges of the large ice cloud on the right. To overcome this shortcoming, a combination

of ProPS with a cloud product that identies multilayered clouds would make sense in the future (as is for instance planned

for the EarthCARE multi-spectral imager Hünerbein et al., 2022). Another challenge, again related to optically thin clouds, is

the misclassication of MP, SC or LQ clouds as TI when they are optically thin, e.g. during formation or dissipation. These

optically thin clouds are typically characterised by high values of BTD10.8−12. Since the vast majority of pixels with high415

BTD10.8−12 values correspond to TI clouds, ProPS, being a statistical method, tends to label pixels with high BTD10.8−12

values as TI clouds.

Often, the ProPS q∗ is spatially slightly shifted against the DARDAR clouds. This is most likely due to the different viewing

geometries of the two instruments. Further, as SEVIRI looks at the clouds under a given angle, a high cloud can cover a

neighbouring lower cloud from SEVIRI’s perspective. These effects are difcult to account for in a quantitative evaluation (see420

Sect. 8.2) and lead to lower probabilities of detection.

The example gures also demonstrate that the cloud situation is often complex, with multi-layered clouds at different alti-

tudes, cloud phase changes on small scales, and other atmospheric factors such as aerosols.

8.2 POD and FAR

In the following, we only consider pixels with a homogeneous cloud state over at least three consecutive pixels along the425

DARDAR curtain. It is difcult for SEVIRI to resolve the cloud state on smaller scales, as mentioned in the section above.

Furthermore, isolated cloud state pixels may be artefacts of the DARDAR product, which we try to exclude.

Fig. 8 shows the overall performance of ProPS evaluated pixel by pixel against the DARDAR cloud state for the six months

of validation data. We distinguish between cloud and phase detection. Fig. 8(a,c) show the number of clear and cloudy pixels

according to DARDAR and colour coded how many of these pixels are identied as clear or cloudy by ProPS. The upper row430

shows this validation for the daytime version, the lower row for the nighttime version of ProPS. We dene the probability

of detection (POD) of clouds (clear sky) as the percentage of pixels classied as cloudy (clear) by DARDAR that are also

classied as cloudy (clear) by SEVIRI. The false alarm rate (FAR) of clouds (clear sky) is correspondingly the percentage of

pixels classied as cloudy (clear) by DARDAR that have a contrary classication by SEVIRI. With this denition, the POD

for clear sky is 86%, for clouds it is 93%, while the FAR are 14% and 7% respectively. Optically thin TI clouds and small435

warm LQ clouds are the clouds which are most difcult to detect: of all undetected clouds (i.e. the red part of the "DARDAR

Cloudy" bar in Fig. 8(a)), 54% are TI clouds and 37% are LQ clouds. Difculties to detect TI clouds are expected since passive

sensors are less sensitive to optically thin clouds that Lidar instruments. LQ clouds are particularly difcult to detect when they

occur over bright surfaces or are embedded in (thick) aerosol layers. Small LQ clouds that do not fully cover SEVIRI pixels

and therefore go undetected also play a role. For the same reasons, TI and LQ are again the two most problematic cloud phases440

when looking at false alarms: Of all false alarms (i.e. the red part of the "DARDAR Clear" bar in Fig. 8(a)), 40% are classied
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Figure 8. Cloud and phase detection for the day version (upper row) and the night version (lower row) of the ProPS method. For IC and TI,

we count both ice classications as correct in the POD values.

by ProPS as TI and 43% as LQ clouds. Looking at these results the other way around, this also implies that one can be very

sure that there really is a cloud at pixels classied as SC, MP or IC by ProPS during the day and that pixels classied as clear

by ProPS are almost never SC, MP or IC clouds.

As expected, the nighttime version of ProPS performs slightly worse than the daytime version, with a POD of 76% for clear445

sky and 95% for clouds. The nighttime version tends to classify too many pixels as cloudy (red part of the "DARDAR Clear"

bar in Fig. 8(c)). This is particularly the case for LQ clouds, which have similar temperatures as the surface and are therefore

difcult to detect using thermal channels alone.

Fig. 8(b) and (d) show the phase detection performance of ProPS for the pixels that are correctly classied as cloudy by

the daytime and nighttime version of ProPS respectively. The POD is dened analogously as for cloud detection. For the450

daytime version, the POD for IC, TI, MP, SC and LQ is 91%, 78%, 52%, 58% and 86% respectively. For the calculation

of these POD values, for IC (TI) clouds, the other ice classication, TI (IC), was also counted as correctly classied, since

it is the same thermodynamic phase. The POD values show that the majority of pixels is correctly classied by ProPS. The

phase classication works especially well for IC and LQ clouds. The TI clouds which are not correctly classied by ProPS are

mainly optically very thin TI clouds with other clouds below. As explained in Sect. 8.1 these pixels are often classied either455

as MP or as the cloud phase of the cloud below. Fig. 8(b) shows that it is difcult to distinguish between MP and SC, with

many MPs being classied as SC and vice versa. This difculty is expected since SC and MP cloud tops occur in very similar

circumstances (similar latitudes, cloud top temperatures and cloud types) and alternate on relatively small scales (see Fig. 7).
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In addition, an MP cloud top may consist mainly of liquid droplets and therefore have very similar radiative properties to an

SC cloud top. Unfortunately, there is no parameter quantifying the liquid fraction of MP pixels in DARDAR, so we have no460

way of checking the performance of ProPS MP detection as a function of liquid fraction. Nevertheless, results show the ability

of ProPS to identify also the most challenging phases MP and SC (more than half of the DARDAR MP and SC pixels are

correctly classied by ProPS, see numbers above).

Interestingly, the nighttime phase classication performs remarkably well, almost on par with the daytime version. To un-

derstand why this is the case we studied examples in the SEVIRI disc and compared the phase classication using only thermal465

channels against using only solar channels for the retrieval. We nd that there are "easier", unambiguous cloud phase cases, for

which the classication using only thermal or only solar is in both cases correct and hence in these situations the combination

of thermal and solar channels does not lead to different results. For the more complex cases, the classication is challenging

for both thermal and solar channels and the combination of solar and thermal information does not lead to a signicant increase

of correctly detected phases. However, the certainty of the retrieval increases considerably when all channels are used. Since470

solar channels contain valuable information on the phase, as outlined in Sect. 4, the increase in certainty when using all chan-

nels shows that the solar channels indeed enhance the accuracy of phase determination while boosting the condence of the

obtained results. It has also been shown in previous studies that the use of solar channels increases accuracy in phase detection

(Baum and Spinhirne, 2000). Note that the similar performance of the two algorithm versions is only true if we consider the

cases where a cloud has been correctly (according to DARDAR) detected. For cloud detection, thermal and solar channels475

have complementary advantages: Solar channels are very helpful at detecting low clouds, which have similar temperatures as

the surface, while thermal channels have advantages for detecting optically very thin clouds. Therefore, the combination of

the selected thermal and solar channels is the best option for a reliable cloud and phase detection, but the similarity of the

performance of ProPS during daytime and nighttime allows for a smooth transition from day to night.

Recall that the output of ProPS contains not only the most likely cloud state, q∗, but also the probabilities for all cloud states.480

In cases where q∗ does not match DARDAR, the second most likely cloud state often does. This is especially true for MP and

SC clouds: When q∗ does not match the DARDAR classication of MP (SC), 68% (65%) of these pixels have MP (SC) as their

second most likely cloud phase. Hence, if both the most and second most likely cloud states are considered correct, the POD

increases to 84% for both MP and SC. This means that we can gain information from the second most likely cloud state result.

8.3 Relation to the certainty parameter485

One of the advantages of the Bayesian approach is the certainty parameter for the retrieval (see Sect. 3.3). Fig. 9 shows the

POD for cloud detection and phase determination given a detected cloud, computed as explained above, per certainty bin of

width 0.1. The POD for cloud detection and phase determination increases monotonically with the certainty parameter. The

two panels below show the number of occurrences of the certainty values. Hence, the certainty parameter is a useful tool to

decide whether to trust a result.490
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Figure 9. Upper row: POD of cloud and phase detection (given that a cloud was detected) as a function of the certainty parameter. Lower

row left: Number of occurrences of certainty values. Lower row right: Number of occurrences of certainty values given a cloud was detected.
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Figure 10. POD (upper row) and counts of occurrences (lower row) of cloudy and clear sky pixels in the SEVIRI disc for the ProPS day

version. POD and counts are computed in latitude-longitude bins of 2.5◦ × 2.5◦ for the six months of validation data.
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Figure 11. POD (upper row) and counts of occurrences (lower row) of the different phases in the SEVIRI disc for the ProPS day version.

POD and counts are computed in latitude-longitude bins of 2.5◦ × 2.5◦ for the six months of validation data.

8.4 Performance on the SEVIRI disc

To better characterize the performance of ProPS, we evaluate its POD on the SEVIRI disc for the six months of validation data.

This evaluation is shown in Fig. 10 and Fig. 11 for the cloud detection and phase detection given a detected cloud respectively.

Here we show the results for the daytime version; the results for the nighttime version can be found in the appendix (see Fig. B1

and Fig. B2). The top panels show the POD of each cloud state and the lower panels show the corresponding distribution of495

number of occurrences of each cloud state according to DARDAR.

Fig. 10 shows that cloud detection is most challenging over deserts, such as in northern and southern Africa. Clear sky

detection is most challenging at the ITCZ and some regions in high latitudes. Looking at the distribution of occurrences, it can

be seen that the regions where cloud and clear sky detection are most challenging correspond to the regions with the fewest

occurrences of each.500

The same is mostly true for phase detection of TI, MP, SC and LQ (see Fig. 11). For instance, MP and SC have their highest

detection rates in high latitudes where they occur most often. The detection of IC clouds on the other hand is uniformly high

over the whole SEVIRI disc.

9 Conclusions

This study presents ProPS, a new method for cloud detection and phase determination using SEVIRI aboard the geostationary505

satellite Meteosat Second Generation. ProPS distinguishes between clear sky, optically thin ice (TI), optically thick ice (IC),

mixed phase (MP), supercooled liquid (SC) and warm liquid (LQ) clouds. The Lidar-Radar cloud product DARDAR is used

as a reference and a Bayesian approach is applied to combine the cloud and phase information from different SEVIRI channels

and prior knowledge. For the probabilities used in the Bayesian approach, we carefully select SEVIRI channels and their

dependencies that are used as conditions in the probabilities in order to optimise the information content of the SEVIRI510

channels. We implement both a day and a night version of the algorithm, with combinations of SEVIRI channels at wavelengths

06,16,87,108 and 12µm, along with a texture parameter derived from the 108µm channel. The result of this Bayesian
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approach is a probability for each cloud state (clear sky and the various cloud phases) per SEVIRI pixel. This allows us

to select the most likely cloud state as the nal result. ProPS effectively transfers the advanced cloud and phase detection

capabilities of DARDAR to the SEVIRI geostationary imager.515

We validate the method using six months of independent collocated DARDAR data. Our ndings show that the daytime

algorithm successfully detects 93% of clouds and 86% of clear sky pixels. It also shows good performance in accurately

classifying cloud phases compared to DARDAR data, with probability of detection (POD) values of 91%, 78%, 52%, 58% and

86% for IC, TI, MP, SC and LQ respectively. Distinguishing between MP and SC poses the greatest challenge in the phase

classication, as there is a tendency for MPs to be classied as SC and vice versa. This is expected as SC and MP cloud tops520

occur in very similar circumstances (e.g. similar latitudes and cloud top temperatures) and can have similar radiative properties

if an MP cloud top consists predominantly of liquid droplets. However, it should be emphasized that ProPS is capable of

distinguishing between them in more than 50% of the cases. The primary challenge for the night version lies in detecting low

LQ clouds, particularly when their temperatures are similar to the surface temperature; the night version of ProPS tends to

overestimate the occurrence of these LQ clouds. However, the night version of ProPS performs nearly as well as the daytime525

version in terms of cloud phase detection. This indicates that ProPS is suitable for studying the complete daily cycle of cloud

phases. Nevertheless, the algorithm is expected to perform best for each location during the times of the day corresponding

to the overight periods where the sza and umu values as well as their combinations (during daytime) are covered by the

DARDAR dataset. Similarly, the prior information used in the retrieval process is only representative for the specic overight

times.530

An advantage of the ProPS method is its ability to assign a certainty to the results: In the validation, we observe that the

POD consistently increases with certainty, providing a straightforward measure of the reliability of the results.

Thus, ProPS represents a signicant advancement in discriminating cloud top phases compared to traditional retrieval meth-

ods. This distinction is crucial for studying ice in the atmosphere, understanding mixed-phase cloud properties and investi-

gating the cloud radiative forcing associated with phase transitions. The new method enables the study of microphysical and535

macrophysical cloud properties of clouds with different phases, in particular MP and SC clouds, which have so far been little

investigated from geostationary satellites. The geostationary perspective allows the analysis of the temporal evolution of clouds

with different phases as well as phase transitions. SEVIRI, which has been in operation for almost two decades (2004-2023),

provides an extensive data set that can be used effectively in conjunction with this method to make valuable statistical compar-

isons with climate models. Furthermore, ProPS has the advantage of providing probabilities for each cloud state. This could540

be a valuable additional parameter for comparison with climate models. In terms of further development of the ProPS method,

the algorithm can be extended to other satellites with few modications using for instance spectral band adjustment factors,

as proposed by Piontek et al. (2023), since similar channels as used for ProPS are available in most current operational polar

and geostationary satellite passive imagers. Furthermore, working with a Bayesian approach offers an additional advantage:

The method can be easily adapted to incorporate input from numerical weather prediction (NWP) models as prior probabilities545

(as suggested by Mackie et al. (2010)). This modication would allow the use of NWP model-derived probabilities for cloud
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Figure A1. Examples for probabilities for different channel (combinations) computed using KDE.

presence and their respective phases as part of the method’s framework. This integration promises to improve the accuracy and

reliability of the ProPS method in future applications.

Code and data availability. MSG/SEVIRI data are available from the EUMETSAT (European Organisation for the Exploitation of Mete-

orological Satellites) data center. The auxiliary data are available at ECMWF (European Center for Medium-Range Weather Forecasts).550

DARDAR data are available from the ICARE Data and Services Center at https://www.icare.univ-lille.fr/ (accessed on 12 January 2023).

The collocated data set, computed probabilities and the ProPS algorithm presented in this study are available on request from the correspond-

ing author.

Appendix A: Examples for probabilities

To provide readers with a visual understanding of the Bayesian probabilities computed using the Kernel Density Estimation555

(KDE) method, we present additional examples in Fig. A1. The gure showcases the probabilities for specic channel combi-

nations, namely BTD10.8−8.7, BTD10.8−12, R1.6, and RR1.6/0.6, given the cloud state q (in different colors). The values for

the additional conditions are displayed in the gure for each channel (combination).
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Figure B1. As Fig. 10, but for the ProPS nighttime version.
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Figure B2. As Fig. 11, but for the ProPS nighttime version

Appendix B: ProPS night version performance on the SEVIRI disc

In Fig. B1 and Fig. B2 we show the POD of the night version of ProPS on the SEVIRI disc for the six months of validation data,560

for cloud detection and phase detection (given a detected cloud) respectively. The upper panels show the POD of each cloud

state and the lower panels show the corresponding distribution of the number of occurrences of each cloud state according to

DARDAR. The gures show that the POD of clear sky is worse in the night time version almost everywhere in the SEVIRI

disc except for the desert regions on the African continent. The POD of clouds on the other hand is similar to the day time

version, suggesting that ProPS has a tendency to overestimate cloudiness during the night. The distribution of the POD of the565

different phases is very similar to the daytime version.

26

https://doi.org/10.5194/egusphere-2023-2345
Preprint. Discussion started: 15 February 2024
c© Author(s) 2024. CC BY 4.0 License.



Author contributions. All authors contributed to the project through discussions. JM and LB conceived the concept of this study. JM de-

veloped the presented methods and carried out the analysis with help from LB and valuable feedback from BM. JM and DP developed

the algorithm for the retrieval. CV supervised the project and provided scientic feedback. JM took the lead in writing the manuscript. All

authors provided feedback on the manuscript.570

Competing interests. The authors declare that they have no conict of interest.

Acknowledgements. We thank F. Ewald for constructive discussions and valuable feedback. This research was funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation)–TRR 301–Project-ID 428312742.

27

https://doi.org/10.5194/egusphere-2023-2345
Preprint. Discussion started: 15 February 2024
c© Author(s) 2024. CC BY 4.0 License.



References

Ackerman, S. A., Smith, W. L., Revercomb, H. E., and Spinhirne, J. D.: The 27-28 October 1986 FIRE IFO Cirrus Case Study: Spec-575

tral Properties of Cirrus Clouds in the 8-12 µm Window, Monthly Weather Review, 118, 2377–2388, https://doi.org/10.1175/1520-

0493(1990)118<2377:TOFICC>2.0.CO;2, 1990.

Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O’Sullivan, D., and

Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358,

https://doi.org/10.1038/nature12278, 2013.580

Baum, B. A. and Spinhirne, J. D.: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 3. Cloud

Overlap, Journal of Geophysical Research: Atmospheres, 105, 11 793–11 804, https://doi.org/10.1029/1999JD901091, 2000.

Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-Top

Property Renements for Collection 6, Journal of Applied Meteorology and Climatology, 51, 1145–1163, https://doi.org/10.1175/JAMC-

D-11-0203.1, 2012.585

Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.-J., Hanschmann, T., Hollmann, R., and Meirink, J. F.: The MSG-SEVIRI-based

cloud property data record CLAAS-2, Earth System Science Data, 9, 415–434, https://doi.org/10.5194/essd-9-415-2017, 2017.

Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama,

R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida,

R.: An Introduction to Himawari-8/9 - Japan’s New-Generation Geostationary Meteorological Satellites, Journal of the Meteorological590

Society of Japan. Ser. II, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016.

Bock, L., Lauer, A., Schlund, M., Barreiro, M., Bellouin, N., Jones, C., Meehl, G. A., Predoi, V., Roberts, M. J., and Eyring, V.:

Quantifying Progress Across Different CMIP Phases With the ESMValTool, Journal of Geophysical Research: Atmospheres, 125,

https://doi.org/10.1029/2019JD032321, 2020.

Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and Boer, G.: Ubiquitous low-level liquid-containing Arctic clouds: New observations and595

climate model constraints from CALIPSO-GOCCP, Geophysical Research Letters, 39, https://doi.org/10.1029/2012GL053385, 2012.

Cesana, G., Waliser, D. E., Jiang, X., and Li, J.-L. F.: Multimodel evaluation of cloud phase transition using satellite and reanalysis data,

Journal of Geophysical Research: Atmospheres, 120, 7871–7892, https://doi.org/10.1002/2014JD022932, 2015.

Cesana, G. V., Khadir, T., Chepfer, H., and Chiriaco, M.: Southern Ocean Solar Reection Biases in CMIP6 Models Linked to Cloud Phase

and Vertical Structure Representations, Geophysical Research Letters, 49, https://doi.org/10.1029/2022GL099777, 2022.600

Choi, Y.-S., Ho, C.-H., Park, C.-E., Storelvmo, T., and Tan, I.: Inuence of cloud phase composition on climate feedbacks, Journal of

Geophysical Research: Atmospheres, 119, 3687–3700, https://doi.org/https://doi.org/10.1002/2013JD020582, 2014.

Chylek, P., Robinson, S., Dubey, M. K., King, M. D., Fu, Q., and Clodius, W. B.: Comparison of near-infrared and thermal infrared cloud

phase detections, Journal of Geophysical Research, 111, https://doi.org/10.1029/2006JD007140, 2006.

Coopman, Q., Hoose, C., and Stengel, M.: Analysis of the Thermodynamic Phase Transition of Tracked Convective Clouds Based on605

Geostationary Satellite Observations, Journal of Geophysical Research: Atmospheres, 125, https://doi.org/10.1029/2019JD032146, 2020.

Coopman, Q., Hoose, C., and Stengel, M.: Analyzing the Thermodynamic Phase Partitioning of Mixed Phase Clouds Over the Southern

Ocean Using Passive Satellite Observations, Geophysical Research Letters, 48, https://doi.org/10.1029/2009JD012346, 2021.

Cover, T. M.: Elements of information theory, John Wiley & Sons, 1999.

28

https://doi.org/10.5194/egusphere-2023-2345
Preprint. Discussion started: 15 February 2024
c© Author(s) 2024. CC BY 4.0 License.



Delanoë, J. and Hogan, R. J.: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer,610

Journal of Geophysical Research, 113, https://doi.org/10.1029/2007JD009000, 2008.

Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds, Journal of Geophysical

Research, 115, https://doi.org/10.1029/2009JD012346, 2010.

Doutriaux-Boucher, M. and Quaas, J.: Evaluation of cloud thermodynamic phase parametrizations in the LMDZ GCM by using POLDER

satellite data, Geophysical Research Letters, 31, n/a–n/a, https://doi.org/10.1029/2003GL019095, 2004.615

Ewald, F., Groß, S., Wirth, M., Delanoë, J., Fox, S., and Mayer, B.: Why we need radar, lidar, and solar radiance observations to constrain

ice cloud microphysics, Atmospheric Measurement Techniques, 14, 5029–5047, https://doi.org/10.5194/amt-14-5029-2021, 2021.

Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild,

M., and Zhang, H.: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity, Climate Change 2021: The Physical

Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,620

https://doi.org/10.1017/9781009157896.009., 2021.

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5

global land cover: Algorithm renements and characterization of new datasets, Remote Sensing of Environment, 114, 168–182,

https://doi.org/10.1016/j.rse.2009.08.016, 2010.

Gregory, D. and Morris, D.: The sensitivity of climate simulations to the specication of mixed phase clouds, Climate Dynamics, 12, 641–625

651, https://doi.org/10.1007/BF00216271, 1996.

Hahn, V., Meerkötter, R., Voigt, C., Gisinger, S., Sauer, D., Catoire, V., Dreiling, V., Coe, H., Flamant, C., Kaufmann, S., Kleine, J., Knippertz,

P., Moser, M., Rosenberg, P., Schlager, H., Schwarzenboeck, A., and Taylor, J.: Pollution slightly enhances atmospheric cooling by low-

level clouds in tropical West Africa, Atmospheric Chemistry and Physics, 23, 8515–8530, https://doi.org/10.5194/acp-23-8515-2023,

2023.630

Heidinger, A. K., Evan, A. T., Foster, M. J., and Walther, A.: A Naive Bayesian Cloud-Detection Scheme Derived from CALIPSO and

Applied within PATMOS-x, Journal of Applied Meteorology and Climatology, 51, 1129–1144, https://doi.org/10.1175/JAMC-D-11-02.1,

2012.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,

A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee,635

D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E.,

Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-

N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/qj.3803,

2020.

Hünerbein, A., Bley, S., Horn, S., Deneke, H., andWalther, A.: Cloud mask algorithm from the EarthCAREmulti-spectral imager: the M-CM640

products, https://doi.org/10.5194/egusphere-2022-1240, 2022.

Key, J. R. and Intrieri, J. M.: Cloud Particle Phase Determination with the AVHRR, Journal of Applied Meteorology, 39, 1797–1804,

https://doi.org/10.1175/1520-0450-39.10.1797, 2000.

Kirschler, S., Voigt, C., Anderson, B. E., Chen, G., Crosbie, E. C., Ferrare, R. A., Hahn, V., Hair, J. W., Kaufmann, S., Moore, R. H.,

Painemal, D., Robinson, C. E., Sanchez, K. J., Scarino, A. J., Shingler, T. J., Shook, M. A., Thornhill, K. L., Winstead, E. L., Ziemba,645

L. D., and Sorooshian, A.: Overview and statistical analysis of boundary layer clouds and precipitation over the western North-Atlantic

Ocean, https://doi.org/10.5194/egusphere-2023-898, 2023.

29

https://doi.org/10.5194/egusphere-2023-2345
Preprint. Discussion started: 15 February 2024
c© Author(s) 2024. CC BY 4.0 License.



Knap, W. H., Stammes, P., and Koelemeijer, R. B. A.: Cloud Thermodynamic Phase Determination from Near-Infrared Spectra of Reected

Sunlight, Journal of the Atmospheric Sciences, 59, 83–96, https://doi.org/10.1175/1520-0469(2002)059<0083:CTPDFN>2.0.CO;2, 2002.

Komurcu, M., Storelvmo, T., Tan, I., Lohmann, U., Yun, Y., Penner, J. E., Wang, Y., Liu, X., and Takemura, T.: Intercompari-650

son of the cloud water phase among global climate models, Journal of Geophysical Research: Atmospheres, 119, 3372–3400,

https://doi.org/https://doi.org/10.1002/2013JD021119, 2014.

Korolev, A., McFarquhar, G., Field, P. R., Franklin, C., Lawson, P., Wang, Z., Williams, E., Abel, S. J., Axisa, D., Borrmann, S., Crosier, J.,

Fugal, J., Krämer, M., Lohmann, U., Schlenczek, O., Schnaiter, M., and Wendisch, M.: Mixed-Phase Clouds: Progress and Challenges,

Meteorological Monographs, 58, 51–550, https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1, 2017.655

Kox, S., Bugliaro, L., and Ostler, A.: Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing, Atmo-

spheric Measurement Techniques, 7, 3233–3246, https://doi.org/10.5194/amt-7-3233-2014, 2014.

Krebs, W., Mannstein, H., Bugliaro, L., and Mayer, B.: Technical note: A new day- and night-time Meteosat Second Generation Cirrus

Detection Algorithm MeCiDA, Atmospheric Chemistry and Physics, 7, 6145–6159, https://doi.org/10.5194/acp-7-6145-2007, 2007.

Li, W., Zhang, F., Lin, H., Chen, X., Li, J., and Han,W.: Cloud Detection and Classication Algorithms for Himawari-8 ImagerMeasurements660

Based on Deep Learning, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–17, https://doi.org/10.1109/TGRS.2022.3153129,

2022.

Listowski, C., Delanoë, J., Kirchgaessner, A., Lachlan-Cope, T., and King, J.: Antarctic clouds, supercooled liquid water and mixed

phase, investigated with DARDAR: geographical and seasonal variations, Atmospheric Chemistry and Physics, 19, 6771–6808,

https://doi.org/10.5194/acp-19-6771-2019, 2019.665

Loveland, T. R. and Belward, A. S.: The IGBP-DIS global 1km land cover data set, DISCover: First results, International Journal of Remote

Sensing, 18, 3289–3295, https://doi.org/10.1080/014311697217099, 1997.

Mackie, S., Embury, O., Old, C., Merchant, C. J., and Francis, P.: Generalized Bayesian cloud detection for satellite imagery. Part

1: Technique and validation for night-time imagery over land and sea, International Journal of Remote Sensing, 31, 2573–2594,

https://doi.org/10.1080/01431160903051703, 2010.670

Marchant, B., Platnick, S., Meyer, K., Arnold, G. T., and Riedi, J.: MODIS Collection 6 shortwave-derived cloud phase classication algo-

rithm and comparisons with CALIOP, Atmospheric Measurement Techniques, 9, 1587–1599, https://doi.org/10.5194/amt-9-1587-2016,

2016.

Masiello, G., Serio, C., Venafra, S., DeFeis, I., and Borbas, E. E.: Diurnal variation in Sahara desert sand emissivity during the dry season

from IASI observations, Journal of Geophysical Research: Atmospheres, 119, 1626–1638, https://doi.org/10.1002/jgrd.50863, 2014.675

Matus, A. V. and L'Ecuyer, T. S.: The role of cloud phase in Earths radiation budget, Journal of Geophysical Research: Atmospheres, 122,

2559–2578, https://doi.org/10.1002/2016JD025951, 2017.

Mayer, J., Ewald, F., Bugliaro, L., and Voigt, C.: Cloud Top Thermodynamic Phase from Synergistic Lidar-Radar Cloud Prod-

ucts from Polar Orbiting Satellites: Implications for Observations from Geostationary Satellites, Remote Sensing, 15, 1742,

https://doi.org/10.3390/rs15071742, 2023.680

Menzel, W. P., Baum, B. A., Strabala, K. I., and Frey, R. A.: Cloud top properties and cloud phase: MODIS Algorithm Theoretical Basis

Document, ATBD-MOD-04, Theoretical Basis Document, 2002.

Merchant, C. J., Harris, A. R., Maturi, E., and Maccallum, S.: Probabilistic physically based cloud screening of satellite infrared im-

agery for operational sea surface temperature retrieval, Quarterly Journal of the Royal Meteorological Society, 131, 2735–2755,

https://doi.org/10.1256/qj.05.15, 2005.685

30

https://doi.org/10.5194/egusphere-2023-2345
Preprint. Discussion started: 15 February 2024
c© Author(s) 2024. CC BY 4.0 License.



Mioche, G., Jourdan, O., Ceccaldi, M., and Delanoë, J.: Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region:

a study based on spaceborne active remote sensing, Atmospheric Chemistry and Physics, 15, 2445–2461, https://doi.org/10.5194/acp-15-

2445-2015, 2015.

Moser, M., Voigt, C., Jurkat-Witschas, T., Hahn, V., Mioche, G., Jourdan, O., Dupuy, R., Gourbeyre, C., Schwarzenboeck, A., Lucke, J.,

Boose, Y., Mech, M., Borrmann, S., Ehrlich, A., Herber, A., Lüpkes, C., and Wendisch, M.: Microphysical and thermodynamic phase690

analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer, Atmospheric Chemistry and

Physics, 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023, 2023.

Nakajima, T. and King, M. D.: Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reected So-

lar Radiation Measurements. Part I: Theory, Journal of the Atmospheric Sciences, 47, 1878–1893, https://doi.org/10.1175/1520-

0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990.695

Okamoto, H., Sato, K., and Hagihara, Y.: Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular

reection in lidar signals, Journal of Geophysical Research, 115, https://doi.org/10.1029/2009JD013383, 2010.

Pavolonis, M.: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Cloud Type and Cloud Phase, 2010.

Pavolonis, M. J., Heidinger, A. K., and Uttal, T.: Daytime Global Cloud Typing from AVHRR and VIIRS: Algorithm Description, Validation,

and Comparisons, Journal of Applied Meteorology, 44, 804–826, https://doi.org/10.1175/JAM2236.1, 2005.700

Pavolonis, M. J., Sieglaff, J., and Cintineo, J.: Spectrally Enhanced Cloud Objects—A generalized framework for automated detection of

volcanic ash and dust clouds using passive satellite measurements: 2. Cloud object analysis and global application, Journal of Geophysical

Research: Atmospheres, 120, 7842–7870, https://doi.org/10.1002/2014JD022969, 2015.

Piontek, D., Bugliaro, L., Müller, R., Muser, L., and Jerg, M.: Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared

Measurements of Geostationary Passive Imagers, Remote Sensing, 15, 1247, https://doi.org/10.3390/rs15051247, 2023.705

Platnick, S., King, M., Ackerman, S., Menzel, W., Baum, B., Riedi, J., and Frey, R.: The MODIS cloud products: algorithms and examples

from terra, 41, 459–473, https://doi.org/10.1109/TGRS.2002.808301, 2003.

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E.,

Yang, P., Ridgway, W. L., and Riedi, J.: The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From

Terra and Aqua, IEEE Transactions on Geoscience and Remote Sensing, 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522, 2017.710

Ricaud, P., Guasta, M. D., Lupi, A., Roehrig, R., Bazile, E., Durand, P., Attié, J.-L., Nicosia, A., and Grigioni, P.: Supercooled liquid water

clouds observed over Dome C, Antarctica: temperature sensitivity and surface radiation impact, Atmospheric Chemistry and Physics

Discussions, https://doi.org/10.5194/acp-2022-433, 2022.

Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and Ratier, A.: An Introduction to Meteosat Second Generation (MSG),

Bulletin of the American Meteorological Society, 83, 992–992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2,715

2002.

Shannon, C. E. and Weaver, W.: A mathematical model of communication, Urbana, IL: University of Illinois Press, 11, 11–20, 1949.

Silverman, B. W.: Density estimation for statistics and data analysis, vol. 26, CRC press, 1986.

Strandgren, J., Fricker, J., and Bugliaro, L.: Characterisation of the articial neural network CiPS for cirrus cloud remote sensing with

MSG/SEVIRI, Atmospheric Measurement Techniques, 10, 4317–4339, https://doi.org/10.5194/amt-10-4317-2017, 2017.720

Tan, I., Storelvmo, T., and Zelinka, M. D.: Observational constraints on mixed-phase clouds imply higher climate sensitivity, Science, 352,

224–227, https://doi.org/10.1126/science.aad5300, 2016.

31

https://doi.org/10.5194/egusphere-2023-2345
Preprint. Discussion started: 15 February 2024
c© Author(s) 2024. CC BY 4.0 License.



Wang, Z.: Level 2 Combined Radar and Lidar Cloud Scenario Classication Product Process Description and Interface Control Document,

JPL Rep 22, 2012.

Wang, Z., Letu, H., Shang, H., Zhao, C., Li, J., and Ma, R.: A Supercooled Water Cloud Detection Algorithm Using Himawari-8 Satellite725

Measurements, Journal of Geophysical Research: Atmospheres, 124, 2724–2738, https://doi.org/10.1029/2018JD029784, 2019.
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